Recently I was fascinated by MongoDB’s flexibility to change data structure on the fly, in contrast there will need a ALT TABLE
SQL statement for any schema change in a SQL database. Here I make a list of typical operations and how they are done in both SQL and NoSQL(in my case, MongoDB) flavours.
Create and use a database
# MySQL: CREATE DATABASE mydb; USE mydb # MongoDB: a database in MongoDB will be created automatically use mydb
Create and drop a table/collection
# MySQL: CREATE TABLE mytable ( id int primary PRIMARY KEY AUTO_INCREMENT, name varchar(200), ... ); DROP TABLE mytable; # MongoDB: it's called a collection in MongoDB # and since it's a document database, no schema is needed for a new collection db.createCollection('mycollection') db.mycollection.drop()
Insert a row/document
# MySQL: INSERT INTO mytable (name, email) VALUES ('John', 'john@doe.com') # MongoDB: db.mycollection.insertOne({name: 'John', email: 'john@doe.com'}) # MongoEngine from mongoengine import Document, fields class mycollection(Document): name = fields.StringField() email = fields.StringField() doc = mycollection(name='John', email='john@doe.com') doc.save()
Select a row/document
# MySQL: SELECT * FROM mytable WHERE name='John'; # MongoDB: db.mycollection.find({name: 'John'}) # MongoEngine mycollection.objects.get(name='John')
Select using Regex
# MySQL: SELECT * FROM mytable WHERE name REGEXP '^Jo' # MongoDB: db.mycollection.find({name: /^Jo/}) # MongoEngine: mycollection.objects(name__regex='^Jo')
More examples are coming…